	Reg. No:						
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::]	PUTTUF	2				
	(AUTONOMOUS)						
	B. Iech I Year I Semester Regular & Supplementary Examinations N	larch-2	023				
	(Agricultural Engineering)						
	Time: 3 hours	Max. M	arks: 6	50			
	(Answer all Five Units $5 \times 12 = 60$ Marks)						
1	a Compare work transfer and heat transfer with neat sketches	CO1	Τ1	6M			
1	b Describe the concept of temperature in zeroth law of thermodynamics	CO1	LI L2	6M			
	OR	COI		UIVI			
2	a What do mean by property? Distinguish between intensive and extensive property.	CO1	L1	6M			
	b What is a thermodynamic system? Explain different types of systems with suitable examples.	CO 1	L2	6M			
	UNIT-II						
3	a Prove equivalence Clausius statement with Kelvin Plank	CO2	L3	6M			
	b One kg of Air is heated from 20°C to 105° C. Find the change of internal energy and change of enthalpy. Assume C _p =1.01 KJ/KgK and C _v =0.72 KJ/KgK.	CO2	L3	6M			
4	What is Steady Flow Process? Derive Steady Flow Energy Equation(SFEE) for an open system	CO2	L3	12M			
	IINIT-III						
5	a Draw P–V and T-S diagrams on Isochoric process, Isobaric, Isothermal process,	CO3	L1	3M			
C	 b Develop the expression of work transfer for an ideal gas in reversible isothermal process. 	CO3	L3	9M			
	OR						
6	A cylinder contains 0.45 m ³ of a gas at 1×10^{3} N/m ² and 80°C. The gas is compressed to a volume of 0.13 m ³ , the final pressure being 5×105 N/m ² . Determine: (i) The mass of gas ; (ii) The value of index _n 'for compression; (iii) The increase in internal	CO3	L3	12M			
	energy of the gas; The heat received or rejected by the gas during compression. Take $\gamma = 1.4$, R = 294.2 J/kg°C						
_							
7	a A Dry Saturated steam at a Pressure of 10 bar enters a turbine. Calculate its Enthalpy and entropy.	CO 4	L4	4M			
	b Develop the expression for air standard efficiency for diesel engine.	CO4	L6	8M			
0	OR An angine of 250 mm have and 275 mm stacks works on Otto such. The alconomic	COA	1.2	1334			
0	volume is 0.00263 m^3 . The initial pressure and temperature are 1 bar and 50°C. If	04	LJ	12111			
	the maximum pressure is limited to 25 bar, find the following:						
	(i) The air standard efficiency of the cycle. (ii) The mean effective pressure for the cycle. Assume the ideal conditions						
	UNIT-V						
9	Describe the different operations of Rankine cycle and also derive the expression for its efficiency.	CO5	L1	12M			
	OR						
10	A power plant operating between 30 bar and 0.02 bars. If the steam supplied is 350° C and the cycle of operation is Rankine, find (i) Draw its TS & HS Diagrams (ii) cycle efficiency (ii) change in enthalpy.	CO5	L3	12M			

R20

*** END ***

		LE FOOLOGIE ATTA PRODUCTION OF TAXANGE ATTACHNOLOGY OF	
		h What is a the medianance statent? Explant offerent types of systems with	
		In the Choles in the second state of the second	
		Agaita truppo dana Agaita tuti-cu suidean uquento iu sigueno	
		10	
			•
	-		